首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26145篇
  免费   3022篇
  国内免费   1753篇
化学   18626篇
晶体学   227篇
力学   77篇
综合类   38篇
数学   20篇
物理学   11932篇
  2024年   19篇
  2023年   191篇
  2022年   497篇
  2021年   691篇
  2020年   857篇
  2019年   837篇
  2018年   708篇
  2017年   799篇
  2016年   1284篇
  2015年   1264篇
  2014年   1271篇
  2013年   2277篇
  2012年   1642篇
  2011年   1786篇
  2010年   1482篇
  2009年   1895篇
  2008年   1771篇
  2007年   1881篇
  2006年   1731篇
  2005年   1372篇
  2004年   1166篇
  2003年   982篇
  2002年   702篇
  2001年   548篇
  2000年   452篇
  1999年   416篇
  1998年   320篇
  1997年   363篇
  1996年   270篇
  1995年   268篇
  1994年   191篇
  1993年   182篇
  1992年   153篇
  1991年   115篇
  1990年   71篇
  1989年   61篇
  1988年   110篇
  1987年   50篇
  1986年   32篇
  1985年   29篇
  1984年   32篇
  1983年   8篇
  1982年   27篇
  1981年   31篇
  1980年   23篇
  1978年   9篇
  1976年   7篇
  1973年   12篇
  1972年   7篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
本文研究了快速测定高温合金中5种非金属元素(As、B、P、Se、Si)的分析方法,以满足高温合金行业对非金属元素检测的需求。利用王水和高氯酸对高温合金进行酸溶解,并系统研究了基体元素和共存元素对分析元素谱线的光谱干扰情况,同时进行了分析谱线的选择。5种非金属元素的检出限在5.5 ~ 11.9 ug/ml,5次数据的相对标准偏差(RSD,n=5)为0.9 % ~ 7 %,各元素的回收率在96 % ~ 102 %之间,该方法适用于高温合金中非金属元素的测定。  相似文献   
32.
33.
Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3? ion in relation to X‐ray photoelectron spectroscopy (XPS). Simulations show that hydrogen‐bond rearrangement in the solvation shell is coupled to intramolecular bond‐length asymmetry in the I3? ion. By a combination of charge analysis and I 4 d core‐level XPS measurements, the mechanism of the solvent‐induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent‐dependent structure of the I3? ion, and the geometric structure has been correlated with the electronic structure.  相似文献   
34.
Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2CH2PtBu2)2}], [RuCl{N(CHCHPtBu2)(CH2CH2PtBu2)}], and [RuCl{N(CHCHPtBu2)2}], in which the ruthenium(II) ions are in the extremely rare square‐planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low‐lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non‐magnetic ground states arise for the two intermediate‐spin complexes owing to unusually large zero‐field splitting (D>+200 cm?1). The change in ground state electronic configuration is attributed to tailored pincer ligand‐to‐metal π‐donation within the PNP ligand series.  相似文献   
35.
《Comptes Rendus Chimie》2015,18(5):474-477
A series of ternary CuMOR–SiO2 mixed materials were prepared by two synthesis approaches (CuMOR1–y–SiO2 and CuMOR2–y–SiO2). Extensive characterization was done for both series and some selected materials were tested in CO catalytic oxidation and NO reduction. The presence of CuMOR and SiO2 segregated phases was observed in both series by XRD, suggesting that silica formation was not inhibited by the mordenite (MOR) presence. UV–Vis results exhibited that Cu ion exchange was successfully done for CuMOR1–y–SiO2 series. In the CuMOR2–y–SiO2 series, the amount of copper was below the sensitivity limit of EDS analysis. CuMOR1–50%–SiO2 catalyst resulted with higher specific surface area and catalytic activity. A possible relation between reduction temperature, the increase in Cu plasmon excitation, and catalytic activity was observed.  相似文献   
36.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   
37.
Pyrrolopyrrole aza‐BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride‐mediated Schiff‐base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near‐infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO–LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl‐substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross‐coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time‐resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved.  相似文献   
38.
The most common methodology used in element concentration measurement and analyzing of wear particles is Atomic emission (AE) spectroscopy .The present paper presents an evaluation method on wear in po...  相似文献   
39.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
40.
Thienoguanosine (thG) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, thG exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto–amino tautomers. We herein investigate the photophysics of thG in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5–20.5 and 7–13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of thG, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号